metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrei S. Batsanov,* Todd B. Marder and Fabian Seeler‡

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England

‡ Current address: Lehrstrul für Anorganische Chemie II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Correspondence e-mail: a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.004 Å Disorder in solvent or counterion R factor = 0.030 wR factor = 0.074 Data-to-parameter ratio = 44.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

fac-Dichlorotris(trimethylphosphine)-(trimethylphosphoniomethyl)rhodium(III) chloride/bromide dichloromethane benzene solvate

The title complex, $[RhCl_2(C_4H_{11}P)(C_3H_9P)_3](Br_{0.12}/Cl_{0.88})$ -CH₂Cl₂·C₆H₆, has an ionic structure with *fac*-octahedral coordination of Rh^{III} in the cation. The anion is a mixture of Cl and Br in a 7:1 ratio. Received 8 February 2006 Accepted 15 February 2006

Comment

The *fac*-[RhCl₂(CH₂PMe₃)(PMe₃)₃]Cl salt has been prepared by Marder, Fultz *et al.* (1987) *via* a reaction of dichloromethane (DCM) with a 16-electron Rh^I complex [RhCl(PMe₃)₃], and characterized by an X-ray crystal structure analysis of its DCM monosolvate, (I*a*). We report here a solvated mixed-anion salt analogue of (I*a*), obtained as a byproduct during our ongoing study of PMe₃-containing rhodium–acetylide complexes (Zhu *et al.*, 2006; Rourke *et al.*, 2002; Rourke *et al.*, 1995, 2001; Fyfe *et al.*, 1991; Chow *et al.*, 1989; Zargarian *et al.*, 1989; Marder, Zargarian *et al.*, 1987).

The asymmetric unit of (I) comprises one *fac*-[RhCl₂(CH₂PMe₃)(PMe₃)₃]⁺ cation, one halide anion and one DCM molecule in general positions, and two half-molecules of benzene; the benzene rings lie on crystallographic inversion centres. The cation has a somewhat distorted *fac*-octahedral geometry, very similar to that of (Ia). The Rh–P bond *trans* to C1 is *ca* 0.1 Å longer than the other two, indicating the strong *trans* influence of a σ -bonded C atom in comparison with the chloride ligands. The P1–Me bond lengths in the phosphoniomethyl ligand average 1.793 (2) Å, appreciably shorter than in the phosphine ligands [1.804 (2)–1.837 (2) Å, average 1.818 (9) Å].

Initial treatment of the anion as purely Cl^- gave high residual electron density of 2.4 e Å⁻³ and $R[F^2>2\sigma(F^2)] =$ 0.037. Modelling the disorder between Cl^- and Br^- in a 7:1 ratio resulted in satisfactory refinement. The source of bromide was found to be an impure commercial sample of RhCl₃·3H₂O, which contained a small amount of the bromo analogue, as confirmed later by spectroscopic analysis.

The anion is surrounded by ten H atoms at distances of 2.74–3.17 Å (2.70–3.09 Å using C–H distances normalised to the neutron diffraction value of 1.08 Å). The DCM molecules form hydrogen bonds to both chloro ligands of the cation, especially Cl1 (adjusted H···Cl distances of 2.54 and 2.74 Å).

Experimental

Conversion of impure commercial RhCl₃·2H₂O to Rh(PPh₃)₃Cl/Br was followed by reaction with PMe₃ (Jones et al., 1980) which gave the salt, [Rh(PMe₃)₄]⁺·Cl⁻/Br⁻, which subsequently reacted with DCM solvent to give a very small amount of the title complex. The absence of bromide at the rhodium centre shows that both halides which are coordinated to the metal originate from the DCM and that little, if any, exchange occurs between these and the outer-sphere halide ion.

Crystal data

$[RhCl_2(C_4H_{11}P)(C_3H_9P)_3]$ -	$D_x = 1.483 \text{ Mg m}^{-3}$
$(Br_{0.12}/Cl_{0.88}) \cdot CH_2Cl_2 \cdot C_6H_6$	Mo $K\alpha$ radiation
$M_r = 696.17$	Cell parameters from 999
Monoclinic, $P2_1/c$	reflections
a = 16.949 (3) Å	$\theta = 12.1 - 23.7^{\circ}$
b = 10.3396 (15) Å	$\mu = 1.34 \text{ mm}^{-1}$
c = 18.424 (3) Å	T = 120 (2) K
$\beta = 105.07 \ (1)^{\circ}$	Block, colourless
V = 3117.7 (9) Å ³	$0.40 \times 0.19 \times 0.13 \text{ mm}$
Z = 4	

Data collection

13203 independent reflections
10300 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.039$
$\theta_{\rm max} = 35.0^{\circ}$
$h = -26 \rightarrow 26$
$k = -16 \rightarrow 16$
$l = -29 \rightarrow 29$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0339P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.030$	+ 0.4573P]
$wR(F^2) = 0.074$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.002$
13203 reflections	$\Delta \rho_{\rm max} = 1.23 \text{ e } \text{\AA}^{-3}$
295 parameters	$\Delta \rho_{\rm min} = -0.82 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C14-H141\cdots Cl1\\ C14-H142\cdots Cl2^i \end{array}$	0.99 0.99	2.60 2.81	3.498 (2) 3.6455 (19)	150 142
	. 3 1			

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$

Methyl groups were treated as rigid bodies (C-H = 0.98 Å) rotating around the P–C bonds, with a common refined U_{iso} value for the three H atoms. Other H atoms were treated as riding on the attached C atoms $[Csp^2-H = 0.95 \text{ Å} \text{ and } Csp^3-H = 0.99 \text{ Å}, \text{ with}$ $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ and $1.3 U_{\rm eq}({\rm C})$, respectively]. The maximum electron-density peak lies 0.05 Å from the Rh atom

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve

Figure 1

with $I > 2\sigma(I)$

The molecular structure of (I). Atomic displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

- Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chow, P., Zargarian, D., Taylor, N. J. & Marder, T. B. (1989). J. Chem. Soc. Chem. Commun. pp. 1545-1547.
- Fyfe, H. B., Mlekuz, M., Zargarian, D., Taylor, N. J. & Marder, T. B. (1991). J. Chem. Soc. Chem. Commun. pp. 188-190.
- Jones, R. A., Mayor Real, F., Wilkinson, G., Gales, A. M. R., Hursthouse, M. B. & Abdul Malik, K. M. A. (1980). J. Chem. Soc. Dalton Trans. pp. 511-518.
- Marder, T. B., Fultz, W. C., Calabrese, J. C., Harlow, R. L. & Milstein, D. (1987). J. Chem. Soc. Chem. Commun. pp. 1543-1545.
- Marder, T. B., Zargarian, D., Calabrese, J. C., Herskovitz, T. & Milstein, D. (1987). J. Chem. Soc. Chem. Commun. pp. 1484-1485.
- Rourke, J. P., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2001). Chem. Commun. pp. 2626-2627.
- Rourke, J. P., Bruce, D. W. & Marder, T. B. (1995). J. Chem. Soc. Dalton Trans. pp. 317-318.
- Rourke, J. P., Stringer, G., Chow, P., Deeth, R. J., Yufit, D. S., Howard, J. A. K. & Marder, T. B. (2002). Organometallics, 21, 429-437.
- Zargarian, D., Chow, P., Taylor, N. J. & Marder, T. B. (1989). J. Chem. Soc. Chem. Commun. pp. 540-544.
- Zhu, Z.,. Ward, R. M., Albesa-Jové, D., Howard, J. A. K., Porrés, L., Beeby, A., Low, P. J., Wong, W.-K. & Marder, T. B. (2006). Inorg. Chim. Acta. In the press. (doi: 10.1016/j.ica.2005.11.030)